
Arranger Documentation
Release 0.1.0

overture.bio

Jan 12, 2022

First Steps

1 Introduction 1
1.1 What is Arranger? . 1
1.2 Features . 1
1.3 License . 1

2 Getting Started 3
2.1 Quick Start . 3
2.2 How Arranger Works . 3
2.3 Architecture . 5
2.4 Indexing Demo Data . 5

3 Arranger for Administrators 7
3.1 Tutorial . 7
3.2 Using the Admin UI . 7

4 Arranger for Application Developers 13
4.1 Server-side . 13
4.2 Browser-side . 15

5 SQON Filters 17
5.1 Sample . 18

6 Installation 19
6.1 Coming Soon . 19

7 Architecture 21

8 Technology Stack 23
8.1 Coming Soon . 23

9 Contributing to the Arranger Project 25

10 Contribute 27
10.1 Indices and tables . 27

i

ii

CHAPTER 1

Introduction

1.1 What is Arranger?

Arranger is a collection of reusable components for creating centric search portals with Elasticsearch. Arranger consists of the following components:

• Arranger Search API provides a layer that sits above your Elasticsearch cluster to expose a data-model
aware GraphQL API, generated from your own Elasticsearch index mapping.

• Arranger Components provides a rich set of UI components that are configured to speak to the search API.

• Arranger Admin provides the API and UI for configuring the search API and content management for the
search portal.

Arranger is one of many products provided by Overture and is completely open-source and free for everyone to use.

See also:

For additional information on other products in the Overture stack, please visit https://overture.bio

1.2 Features

• GraphQL API for query flexibility.

• SQON query filter notation balances between human-interpretability and machine-readability to simply search.

• Admin UI for API configuration and content management.

• Configuration import and export for easy migration.

1.3 License

Copyright (c) 2018. Ontario Institute for Cancer Research

1

https://www.overture.bio/products/arranger
https://www.elastic.co/products/elasticsearch/
https://graphql.org/
https://overture.bio
https://overture.bio
/src/sqon.html

Arranger Documentation, Release 0.1.0

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero
General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see
https://www.gnu.org/licenses.

2 Chapter 1. Introduction

https://www.gnu.org/licenses

CHAPTER 2

Getting Started

The easiest way to understand Arranger, is to simply use it!

Below is a description of how to get Arranger quickly up and running, as well as a description of how Arranger works
and some important terms.

2.1 Quick Start

The goal of this quick start is to get a working application quickly up and running.

Using Docker:

1. Download the latest version of Arranger.

2. From the Arranger root directory, run docker-compose:

$ docker-compose up -d

Arranger should now be deployed locally.

Alternatively, see the Installation instructions.

2.2 How Arranger Works

1. Starting with some Elasticsearch (ES) indices with mappings.

• Arranger makes no assumption about your data model.

• Model your index mappings and index them.

• For demo convenience, you can follow a tutorial bellow to index some test data from our Kids First project.

See also:

The Overture software suite also provides Maestro for indexing genomic data to ES

3

https://www.docker.com/
https://docs.docker.com/compose/
installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.4/mapping.html
https://www.overture.bio/
https://github.com/overture-stack/maestro/tree/develop

Arranger Documentation, Release 0.1.0

2. Create an API version for your project from Arranger Admin.

• From your browser, navigate to http://localhost:8080

• Click “Add Project”

• Input your project id in snake_case

• Click “Add Index” for each index you want to expose from ES, with the following fields:

– “Name”: any name for your index, in camelCase

– “ES Index”: the index that you want to expose

– “ES Type”: the type that you want to expose

• Click “Add” once finalized.

• Navigate into your newly registered project’s configuration and ensure that “Has Mapping” is “yes” for
all indices registered.

• Configure your project from the API and click “Save” to save as a new project.

3. View your data in a portal.

• From a UI:

– Go to http://localhost:8081/?selectedKind=Portal.

– Select your project and index from the dropdown.

– Note: a production-ready white-label portal using UI components provided by Arranger is in our
roadmap for Arranger.

• From the GraphQL API:

– Each Arranger project created through the Admin system in step 2 creates a new Graphql endpoint.

– Start a GraphQL IDE (such as GraphiQL or GraphQL Playground

– Point your IDE to http://localhost:5050/<project_id>/graphql to explore the API
schema (where <project_id> is the project id you have input in step 2).

– For documentation regarding this API, check out the Arranger for Application Developers guide

4 Chapter 2. Getting Started

http://localhost:8080
admins.html
http://localhost:8081/?selectedKind=Portal
https://electronjs.org/apps/graphiql
https://electronjs.org/apps/graphql-playground
appdevelopers.html

Arranger Documentation, Release 0.1.0

2.3 Architecture

2.4 Indexing Demo Data

• From your browser, visit the locally running Kibana at http://localhost:5601 and go to Dev Tools

• Creating a file_centric index:

– Run these commands to create a file_centric index and add a mapping then these commands to index
some demo documents into the index

– Run these commands to create a participant_centric index and add a mapping then these com-
mands to index some demo documents into the index

• You can run GET file_centric/_mapping and GET participant_centric/_mapping to con-
firm that the mapping has been created successfully

2.3. Architecture 5

https://www.elastic.co/products/kibana
http://localhost:5601
http://localhost:5601/app/kibana#/dev_tools
file_centric_mapping.html
file_centric_docs.html
participant_centric_mapping.html
participant_centric_docs.html
participant_centric_docs.html

Arranger Documentation, Release 0.1.0

6 Chapter 2. Getting Started

CHAPTER 3

Arranger for Administrators

3.1 Tutorial

To administer Arranger, the admin must:

1. Install Arranger.

View the installation instructions.

2. Have an Elasticsearch mapping and data indexed to search.

View the Indexing Demo Data for a demo setup.

3. Admin registers the indices with arranger through the admin UI and apply configurations.

3.2 Using the Admin UI

The arranger UI reflects the following pseudo entity relationship:

7

installation.html
gettingstarted.html#indexing-demo-data

Arranger Documentation, Release 0.1.0

1) Projects:

This page lists the available projects and provides an interface for registering new projects

Available functionalities:

8 Chapter 3. Arranger for Administrators

Arranger Documentation, Release 0.1.0

• Adding a new project

• Removing existing project

• Export configuration data (exported data can then be imported into new projects to migrate data).

Clicking on a project id will navigate to that project’s list of indices.

2) Indices:

This page lists the indices registered to Arranger under the selected project.

Clicking on an index name will navigate to the configuration page for the index. The following configu-
rations are available:

a) Fields configurations

This lists all fields available in the index and allows configuration of Arranger metadata for
these fields, including:

• Display Name: how the field should be displayed to user.

• Aggregation Type: lets the search portal know how to display aggregation filters for the
field.

• Active: this field is DEPRECATED

• Quicksearch enabled: whether the field is enabled for quicksearch using the @ar-
ranger/components’s QuickSearch component.

3.2. Using the Admin UI 9

Arranger Documentation, Release 0.1.0

• Is primary key: check if the field is the unique identifier for the index’s main entity.

• Is array: check if the field is an array. Elasticsearch’s mapping does not specify this
information.

For convenience, filtering on the fields can be done through the inputs above the header.

b) Facet panel configurations

This lists all available aggregations on the fields mentioned. On Arranger’s default portal UI,
this list is rendered as a facet panel. Each entry on Supported configutations:

• Ordering the facets: drag the facet on its “hamberger menu icon” to place the facet at the
desired position. Alternatively, the position can also be set through the select menu beside
the icon.

• Shown: displays the facet in the portal’s facet panel.

• Active: enables this facet for search. An Active facet will appear in the Advanced-
FacetView component in @arranger/components. Only facets that are both Active and
Shown will be shown in the portal’s facet panel.

c) Data table configurations

10 Chapter 3. Arranger for Administrators

Arranger Documentation, Release 0.1.0

This contains configuration for the data table in the default portal. Each entry in the list repre-
sents a column in the data table. Available configurations:

• Column order: positioning can be done by dragging or using the select, similar to the facet
panel.

• Active: enables this column to be viewed in the table. Does not show by default.

• Default: shows this column by default. Can only be checked if Active is checked.

• Sortable: enables sorting of the table on this field.

d) Quick search configurations

This contains configuration for the portal’s quick-search feature, which allows users to filter
indexed entities by text. Currently, Arranger only supports exact match on quicksearch, but
free-text search is in our roadmap to support. This feature can be exposed to end-users throught
the QuickSearch UI component from @arranger/components.

3.2. Using the Admin UI 11

Arranger Documentation, Release 0.1.0

Only entities (in other words, the root object and its “nested” fields in Elasticsearch) are avail-
able for quick search.

Available configurations:

• Display Name: the name to display this field as.

• Active: check to enable search for this entity.

• Key Field: the unique field that identifies each instance of this entity.

• Search Field: the properties of the entity to enable search on.

12 Chapter 3. Arranger for Administrators

CHAPTER 4

Arranger for Application Developers

Arranger comes in individual pieces that can be flexibly composed together to meet your application’s needs. These include:

• @arranger/server: the main server-side application

• @arranger/components: UI components used for building end-user facing applications

• @arranger/admin: the server-side admin Graphql API

• @arranger/admin-ui: the UI interface as described in the Arranger for Administrators guide.

Additionally, some packages that are used internally are also published. These include:

• @arranger/schema: contains the Graphql schema generated and served by @arranger/server.

• @arranger/mapping-utils: contains utility functions used for computing / interpreting elasticsearch map-
pings and Arranger metadata about the mappings.

• @arranger/middleware: responsible for translating SQON and aggregation parameters from the @ar-
ranger/server to elasticsearch queries and aggregations.

4.1 Server-side

On the server side, @arranger/server and @arranger/admin are the relevant packages.

Some prerequisit:

• Elasticsearch version 6.6.1 running.

• Kibana version 6.6.1 (optional)

• NodeJs version 10

There are multiple ways to get up and running with Arranger on the server-side:

1) Running a stand-alone all-in-one instance:

• Using Docker:

13

https://www.npmjs.com/package/@arranger/server
https://www.npmjs.com/package/@arranger/components
https://www.npmjs.com/package/@arranger/admin
https://www.npmjs.com/package/@arranger/admin-ui
admins.html
https://www.npmjs.com/package/@arranger/schema
https://www.npmjs.com/package/@arranger/mapping-utils
https://www.npmjs.com/package/@arranger/middleware

Arranger Documentation, Release 0.1.0

1) The latest arranger server image is available on Dockerhub

2) Alternatively, you may build an image using the Dockerfile.server file from the Ar-
ranger source

• Running with Node:

1) Clone the Arranger repo: git clone git@github.
com:overture-stack/arranger.git

2) Navigate to the directory: cd arranger

3) Install dependencies: npm ci && npm run bootstrap

4) Navigate to the modules/server directory: cd modules/server

5) Start the server: npm start

This will start an instance of @arranger/server on port 5050.

By default, this bundle also comes with the admin API from @arranger/admin serverd at /
admin/api. From your browser, navigate to http://localhost:5050/admin/graphql to explore
this API

Limitation of this approach: the API from @arranger/admin is not meant to be exposed
to end-users, hence also not horizontally scalable. For the second a production-ready setup,
please use the next option:

2) Running with custom express apps:

• Example search app (horizontally scalable):

import express from 'express';
import Arranger from '@arranger/server';

const PORT = 9000

Arranger({
esHost: "http://localhost:9200"

}).then(router => {
const app = express();
app.use(router);
app.listen(PORT, () => {
console.log(` search API listening on port ${PORT} `)

})
})

• Example admin app (single instance):

import express from "express";
import adminGraphql from "@arranger/admin/dist";

const PORT = 8000

adminGraphql({
esHost: "http://localhost:9200"

}).then(adminApp => {
const app = express();
adminApp.applyMiddleware({
app,
path: "/admin"

});

(continues on next page)

14 Chapter 4. Arranger for Application Developers

https://cloud.docker.com/u/overture/repository/docker/overture/arranger-server
https://github.com/overture-stack/arranger
https://github.com/overture-stack/arranger
http://localhost:5050/admin/graphql

Arranger Documentation, Release 0.1.0

(continued from previous page)

app.listen(PORT, () => {
console.log(` Admin API listening on port ${PORT} `)

})
})

Both applications should be interacting with the same Elasticsearch instance. Since they are
two separate applications, they can be scaled separately, with separate authentication and au-
thorization rules.

4.2 Browser-side

On the browser side, @arranger/admin-ui and @arranger/components are the relevant packages. Both packages are
both written in React, hence we recommend using React for your application for the most seamless integration.

• @arranger/admin-ui: This package provides the admin interface that is documented in the Arranger for admin-
istrator section.

Integration with your React app:

1) Install the package: npm i @arranger/admin-ui

2) Integrate into your app:

import ArrangerAdmin from '@arranger/admin-ui/dist';
import { Route, Switch } from 'react-router-dom';

const ArrangerAdminPage = () => (
<ArrangerAdmin basename="/admin" apiRoot="http://localhost:8000"

→˓fetcher={fetch} />
)

Configurations:

– basename: tells ArrangerAdmin to treat /admin as the root path for client-
side routing.

– apiRoot: tells ArrangerAdmin to communicate with back-end API hosted at
http://localhost:8000

– fetcher: allows specifying custom data fetcher to use, this is usefull for integrating
custom client-side loggins / authorization logics. fetchermust implment the Fetch
API.

• @arranger/components: This package provides UI components that are pre-configured to work with the @ar-
ranger/server API. To explore the components this package provide, follow the steps bellow:

1) Clone the Arranger repo: git clone git@github.com:overture-stack/arranger.git

2) Navigate to the directory: cd arranger

3) Install dependencies: npm ci && npm run bootstrap

4) Navigate to the modules/components directory: cd modules/components

5) Start the Storybook server: npm run storybook

A basic repo UI can be found at: arranger/modules/components/stories/Portal.js

4.2. Browser-side 15

https://reactjs.org/
admins.html
admins.html
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://storybook.js.org/

Arranger Documentation, Release 0.1.0

16 Chapter 4. Arranger for Application Developers

CHAPTER 5

SQON Filters

Arranger uses a custom JSON object format for filtering that is called SQON (pronounced like “Scone”). SQON
provides a flexible system for combining many different filters.

A SQON object consists of nested objects of two types: Operations and Values.

Operation objects apply boolean logic to a list of operation objects. They are of the form:

Combination Operation (aka, Boolean Operation) which groups one or more filters

{
"op":"", //Operation to apply to content ["and", "or", "not"]
"content":[] //List of Operation objects that the boolean operation will

→˓apply to
}

OR

Field Operation that applies to a filter to Value Object

{
"op":"", //Operation to apply to content ["in", "<=", ">="]
"content":{} //Value object specifying the field and list of values that

→˓the field must be "in" or "not-in"
}

Value objects specify a list the field name and values for it that the wrapping . This filter can specify to include or
exclude fields with any of the listed values. It will have the following format:

{
"field":"", //name of the field this operation applies to
"value":[] //List of values for the field if using the "in" operation, or a

→˓scalar value for ">=" and "<=" operations
}

The top level of a SQON must always be a Combination Operation, even if only a single filter is being applied.

17

Arranger Documentation, Release 0.1.0

5.1 Sample

{
op: "and",
content: [
{

op: "or",
content: [

{
op: "in",
content: {

field: "id",
value: ["id123"]

}
}

]
},
{

op: "in",
content: {

field: "id",
value: ["id123"]

}
}

]
}

18 Chapter 5. SQON Filters

CHAPTER 6

Installation

6.1 Coming Soon

19

Arranger Documentation, Release 0.1.0

20 Chapter 6. Installation

CHAPTER 7

Architecture

Coming Soon

21

Arranger Documentation, Release 0.1.0

22 Chapter 7. Architecture

CHAPTER 8

Technology Stack

8.1 Coming Soon

23

Arranger Documentation, Release 0.1.0

24 Chapter 8. Technology Stack

CHAPTER 9

Contributing to the Arranger Project

Coming Soon

25

Arranger Documentation, Release 0.1.0

26 Chapter 9. Contributing to the Arranger Project

CHAPTER 10

Contribute

If you’d like to contribute to this project, it’s hosted on github.

See https://github.com/overture-stack/arranger

10.1 Indices and tables

• genindex

• search

27

https://github.com/overture-stack/arranger

	Introduction
	What is Arranger?
	Features
	License

	Getting Started
	Quick Start
	How Arranger Works
	Architecture
	Indexing Demo Data

	Arranger for Administrators
	Tutorial
	Using the Admin UI

	Arranger for Application Developers
	Server-side
	Browser-side

	SQON Filters
	Sample

	Installation
	Coming Soon

	Architecture
	Technology Stack
	Coming Soon

	Contributing to the Arranger Project
	Contribute
	Indices and tables

